

Home Search Collections Journals About Contact us My IOPscience

Spectroscopic properties of SrRE₂O₄: Eu³⁺ (RE identical to Eu, Gd, Y and In): crystal-field analysis and paramagnetic susceptibility measurements

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1993 J. Phys.: Condens. Matter 5 5201 (http://iopscience.iop.org/0953-8984/5/29/015)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.159 The article was downloaded on 12/05/2010 at 14:13

Please note that terms and conditions apply.

Spectroscopic properties of $Srre_2O_4$: Eu^{3+} ($Re \equiv Eu$, Gd, Y and In): crystal-field analysis and paramagnetic susceptibility measurements

M'hamed Taibi[†][‡], Elizabeth Antic-Fidancev[†], Jilali Aride[‡], Michèle Lemaitre-Blaise[†] and Pierre Porcher[†]

† Laboratoire des Eléments de Transition dans les Solides, UPR 210 du CNRS, 1 Place A Briand, F-92195 Meudon, France
‡ Laboratoire de Physico-Chimie des Matériaux, Ecole Nationale Supérieure de Takaddoum, BP 5118 Rabat, Morocco

Received 16 January 1993, in final form 10 May 1993

Abstract. The luminescence properties of trivalent europium embedded in an isostructural $SrRe_2O_4$ (RE \equiv Eu, Gd, Y, In) series have been studied. The energy level schemes as well as the crystal-field analysis of the two non-equivalent point sites present in the structure show clearly the smooth modifications of the europium local probe environment for only one point site versus the ionic radius of the cation, the environment of the other site being quite unmodified. The paramagnetic susceptibility of the europium compound is well reproduced by using the wavefunctions derived from the crystal-field calculation.

1. Introduction

In previous articles we studied the optical properties of some of the stoichiometries found in the RE₂O₃-BaO-ZnO chemical system [1,2]. This system is related to the RE₂O₃-BaO-CuO system but is transparent from IR to UV wavelength ranges. We focused our attention on RE₂BaZnO₅, isostructural to RE₂BaCuO₅, which is found as an impurity phase in superconducting materials [3]. Moreover, it is interesting to replace the barium ion by other alkaline earths such as Sr and Ca. In this way it occurred to us that it would be interesting to study the optical properties of the alkaline-earth-rare-earth oxides (plus indium) MRE₂O₄, considered as precursor materials for synthesis of the ternary oxides. These compounds have been known for years [4-8] but the purpose of the present study is to obtain a better comprehension of their optical properties. To achieve this, the classical Eu³⁺ [9-11] spectroscopic probe has been introduced into the matrices. Another goal of the work is to emphasize the structure-optical properties relation, and in particular to see how the limit of existence of these phases is translated in terms of rare-earth optical properties.

2. Experiment

2.1. Sample preparation

 $SrEu_2O_4$ and $SrRE_2O_4:2\% Eu^{3+}$ (RE = Gd, Y, In) were prepared using high-purity starting oxides. The stoichiometric mixture of the intimately ground rare-earth oxides and strontium

carbonate is fired at 900 °C for 24 h and then at 1400 °C for 48 h. The resulting compounds, checked by the x-ray technique, appeared to be of a single phase. Good crystallinity of the samples was observed from the emission linewidth [9], as well as from the x-ray technique.

2.2. Optical measurements

The optical absorption spectrum was measured only for $SrEu_2O_4$ at room temperature and liquid-nitrogen temperature with a commercial Cary 2400 spectrometer. The site-unresolved fluorescence excitation was made using the 457.9 nm line of a 5W CW argon ion laser, whereas the site-selective excitation is made through a rhodamine 6G dye laser excitation on the respective ${}^5D_0 \rightarrow {}^7F_0$ transition of the chosen crystallographic site. The fluorescence emission was recorded by standard techniques at 10, 77 and 300 K.

2.3. Magnetic measurements

The paramagnetic susceptibility of pure $SrEu_2O_4$ was measured using a DMS5 suspended magnetometer between 2 and 300 K. All measurements included diamagnetic correction of the elements. The paramagnetic susceptibility was found to be independent of the magnetic field in the temperature range of our measurements.

2.4. Crystal structure

In their review of the MO-RE₂O₃3 (M \equiv Ca, Sr, Ba; RE \equiv Gd, Ho, Yb, Y) binary system, Barry and Roy [12] classified the compounds into three classes, roughly corresponding to three alkaline-earth cations:

- (1) CaY₂O₄ and CaHo₂O₄;
- (2) CaYb₂O₄, SrGd₂O₄, SrY₂O₄, SrHo₂O₄ and SrYb₂O₄;
- (3) $BaGd_2O_4$, BaY_2O_4 , $BaHo_2O_4$ and $BaYb_2O_4$.

For the series that we are at present interested in, Muller-Buschbaum [13] established the crystal structure of SrY_2O_4 , and Pepin [14] extended the determination of the cell parameters to $RE \equiv Sm-Lu$, In and Y. These compounds are isostructural to $CaFe_2O_4$ and belong to the orthorhombic system (space group, Pnma D_{2h}^{16} , No. 62). In that structure the RE element is located at two 4c positions corresponding to a C_s point site symmetry. For both sites, RE is sixfold coordinated. It clearly appears (figure 1) that one site (site II) is more regular; its point symmetry is relatively close to C_{2v} . This site has the larger volume and longer average bonding distances. Thus, we can suppose that it is less sensitive to a variation in the ionic radius of the cation RE. In this way we can relate the 'optical' and the 'crystallographic' sites.

2.5. Theoretical treatment of energy level scheme

The 4f⁶ configuration of the Eu³⁺ ion is one of the largest of the ground-state configurations of the rare-earth elements, involving 3003 [α SLJM) determinantal states. The energy level scheme is spread over about 200 000 cm⁻¹. The nearest excited configuration 4f⁵5d partially overlaps the ground-state configuration with the lowest states situated at about 70 000 cm⁻¹. In practice the energy level scheme derived from absorption, emission and/or excitation spectroscopy yields only a few terms of the 119 possible terms of the 4f⁶ configuration. For example, in the case of Eu³⁺ embedded in rare-earths oxyhalides, only ⁷F, ⁵D, ⁵L (in part) and ⁵G (in part) are observed [10, 11]. Naturally, these reduced data are not sufficient for determining the configuration. The relatively large number of free-ion parameters (the

Figure 1. Local symmetries of the RE^{3+} cation in SrY₂O₄. Note that the bonding distances are slightly different from those indicated in [13].

Figure 2. Part of the emission spectrum of SrY_2O_4 : Eu^{3+} at 77 K.

Racah and two- and three-body interactions) introduced by the classical theories cannot be considered as adjustable in the experiment and are thus fixed to the extrapolated values [15]. On the contrary a large number of transitions between Stark levels permits good determination of the crystal field (CF) parameters. The one-electron CF Hamiltonian H_{CF} consists of a sum of products of the B_q^k -parameters and the spherical tensors C_q^k appropriate to the site symmetry of the Eu³⁺ ion:

$$H_{CF} = \sum_{k=0}^{6} \sum_{q \ge -k}^{q \le k} \left[B_{q}^{k} \left(C_{q}^{k} + (-1)^{q} C_{-q}^{k} \right) + \mathrm{i} S_{q}^{k} \left(C_{q}^{k} - (-1)^{q} C_{-q}^{k} \right) \right].$$

For the C_s point symmetry all B_q^k and S_q^k with k and q even are invariant under all symmetry operations, giving 15 parameters, whereas all S_q^k vanish for C_{2v}, reducing the number of parameters to nine. The secular determinant can be divided into two submatrices of about

1500 × 1500, according to the two values of the crystalline quantum number μ . However, the ⁷F ground-state term is well isolated from the rest of the configuration and it alone has that multiplicity. This is why the CF parameters can be determined accurately on a very reduced 49 × 49 submatrix corresponding to the ⁷F ground-state term [16]. On such a reduced basis, only the CF operator is involved if the ⁷F_j barycentres are adjusted to their experimental values. All computations are performed on a PC by the routines REEL and IMAGE [16]. The standard least-squares method was carried out in order to optimize the B_q^k -parameters. The RMS deviation σ between experimental and calculated energy levels as well as the residue $\sum (E_{exp} - E_{calc})^2$ were used as figures of merit for the quality of the fit.

2.6. Theoretical treatment of the paramagnetic susceptibility

The effect of an externally applied magnetic field on an energy level i is reproduced by the Van Vleck formula, which is derived from the perturbation theory [17]:

$$\chi_{i} = N\beta^{2} \bigg[\frac{\langle \phi_{i}^{(0)} | \hat{\sigma} | \phi_{i}^{(0)} \rangle^{2}}{kT} - 2 \sum_{j \neq i} \frac{\langle \phi_{i}^{(0)} | \hat{\sigma} | \phi_{j}^{(0)} \rangle \langle \phi_{j}^{(0)} | \hat{\sigma} | \phi_{i}^{(0)} \rangle}{E_{i} - E_{j}} \bigg].$$

In this formula, N is the Avogadro number, β is the Bohr magneton, and E_i and E_j are the non-perturbed energy levels. $\hat{\sigma}$ is the magnetic dipole operator $L + g_eS$ represented by a first-rank tensor having three components which characterize the magnetic anisotropy. The expression of the non-perturbed wavefunctions ϕ is obtained from the diagonalized of the secular determinant of the entire configuration. However, the symmetry is restricted here to the C_{2v} symmetry, as a consequence of RAM limitations in the PC and in order to save computing time. The total macroscopic paramagnetic susceptibility and its temperature dependence are derived from the above formula by summing over the thermally populated energy levels, according to Boltzmann statistics.

3. Results and discussion

3.1. Analysis of the data

The fluorescence emission of the SrRE₂O₄ compounds is relatively intense, whatever the cation RE. When excited by the 457.9 nm line of the CW argon ion laser, the fluorescence emissions from the 5D_2 and 5D_1 are observed for all matrices, except at room temperature for which the emissions are quenched. On the contrary the 5D_0 level emits intensively, except for the pure europium compound. The presence of two lines for ${}^5D_0 \rightarrow {}^7F_0$ transition (figure 2) indicates two point sites of low symmetry (C_s, C_n or C_{nv}) for the rare earth, as a consequence of the application of the group theory selection rules for electric dipole transitions [18]. Almost all ${}^5D_0 \rightarrow {}^7F_1$ transitions are observed without selection rules. This feature indicates a point symmetry not higher than C_{2v}, which is in agreement with the crystallographic data. A dye laser excitation on each ${}^5D_0 \rightarrow {}^7F_0$ transition permits site-selective excitation of the fluorescence with a very reduced energy transfer between the two sites. For each site, almost all possible transitions are observed, which confirms the C_s point symmetry. The corresponding energy schemes were constructed for the 7F_1 , 7F_2 , 7F_3 and 7F_4 levels (table 1), which constitutes a basis large enough for accurate CF calculations.

The experimental data derived from the fluorescence measurements also constitute an excellent means of testing the nature of the chemical bond when a series of isostructural matrices is involved. Figure 3(a) shows the variation in the ⁷F₁ splitting for two sites of the

	Energy (cm ⁻¹)						
	SrGd ₂ O ₄		SrY ₂ O ₄		SrIn ₂ O ₄		
Level	Site I	Site II	Site I	Site II	Site I	Site II	
⁷ F ₀	0	0	0	0	0	0	
⁷ F1	208 339 554	276 321 414	212 340 520	273 324 421	248 341 463	273 329 417	
⁷ F ₂	811 1007 1190 1257	809 831 984 1113 1162	800 917 993 1 170 1 251	806 828 978 1118 1165	788 873 985 1 140 1 202		
⁷ F3	1 846 1 873 1 911 2 013 2 037 2 096	1 925 1 944 2 008 2 038 	1 835 1 869 1 902 1 998 2 034 2 086	1 926 1 951 2 008 2 054	1 808 1 865 1 900 2 007 2 059	1913 1962 — 2054 —	
⁷ F4	2 135 2 667 2 768 2 811 3 063 3 095 3 121 3 126 	2 685 	2 127 2 654 2 759 2 802 3 052 3 085 3 117 3 132 3 186 3 210	2657 2690 2796 3052 3144 3166 3221	2 596 2 740 2 768 3 028 3 086 3 113 3 140 3 167 3 197	2659 2711 3023 3162 3217 3260	
⁵ D ₀	17 232	17 176	17214	1 7 1 76	17 187	17 175	

Table 1. Experimental energy level schemes of Eu³⁺ in SrRE₂O₄ at 77 K.

series. It is clear that the ${}^{7}F_{1}$ splitting of site II (as well as the splitting of other ${}^{7}F_{J}$ levels) does not vary versus the ionic radius of the cation RE. This is why the CF calculations will be performed in only one case for such a site. For site I, on the contrary, the ${}^{7}F_{1}$ splitting decreases smoothly with decrease in the RE ionic radius (figure 3(*b*)). When plotted on the same abcissa scale, the variation in the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ position (figure 3(*c*)) confirms the difference between the two sites; the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ position does not vary for site I, whereas its position is lowered when the ionic radius of the cation decreases in site I. Such features suggest study of the scandium compounds for which a crossover of the ${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ positions could be expected. In fact, we were not able to synthesize this compound, or even In–Sc or Y–Sc solid solutions rich in Sc. The analysis of the spectroscopic properties helps to determine the limits of existence of the SrO–RE₂O₃ chemical system. If the RE ionic radius was about 0.76 Å, the two sites should be equivalent.

3.2. Crystal-field simulation

Simulation of the energy level scheme is made for the two sites. Two point symmetries are tested: C_{2v} and C_s . The simulations in the C_{2v} group involving nine parameters were relatively simple to perform, yielding a low σ and residue. The CF parameter set deduced constitutes a good set of starting values for refinement in the C_s symmetry involving 15

Figure 3. Variation of energy levels versus the ionic radius of the cation RE^{3+} . (a) The 5D_0 position of the two point sites. (b) The 7F_1 position for the site I. (c) The 7F_1 position for the site II.

Figure 4. Experimental and calculated paramagnetic susceptibility.

parameters. The number of CF parameters is immediately reduced to 14 by appropriate rotation around the main axis of the reference axis system, which cancels the S_2^2 -parameter.

When no polarization measurements are available, i.e. no knowledge of the irreducible representation associated with the CF levels, the simulation procedure proceeds as follows. The first step is to consider the ⁷F₁ level involving only the CF parameters B_q^2 . Three sets of these parameters are then deduced and fixed. The second step considers ⁷F₁ + ⁷F₂ together, involving B_q^2 and B_q^4 . Three simulations are attempted owing to the three sets of B_q^2 , and only one set is finally satisfactory. The remaining B_q^6 -parameters are deduced when ⁷F₃ + ⁷F₄ are introduced into the simulation.

For site I, the simulations are performed for the three matrices (table 2) whereas only one simulation is attempted for site II (table 3) on $SrY_2O_4 Eu^{3+}$ as a consequence of nonvariation in the energy level positions. Although the number of CF parameters increases, the simulation in C_s symmetry constitutes a real improvement with a better RMS σ and a very small residue. For both simulations the real parts of the CF parameters vary smoothly with the cation, whereas the tendency is not very clear for the imaginary part. This last feature which is usual in this type of simulation—is probably a consequence of the algorithm used in the standard routines for diagonalization of complex matrices.

3.3. Paramagnetic susceptibility calculation

The experimental results are presented in figure 4. At temperatures lower than 30 K a rapid increase in χ when the temperature decreases is observed. It is due to a small amount of highly paramagnetic impurities, necessarily Eu²⁺. The estimated concentration which is easily calculated from the large value of the Eu²⁺ effective magnetic moment (11.2 μ_B) is

	Value (cm^{-1})						
	SrGd ₂ O ₄		SrY ₂ O ₄		SrIn ₂ O ₄		
Parameter	C _{2v}	C _s	C _{2v}	C _s	C _{2v}	Cs	
$\overline{B_0^2}$	78	66	115	129	76	85	
B_2^2	609	613	579	580	443	439	
$B_0^{\overline{4}}$	- 457	- 483	- 326	- 304	- 263	- 281	
B_2^4		-1994	-2079	-2063	-2088	-2101	
S_{2}^{4}	_	162	<u> </u>	63	_	137	
B_4^4	1064	1026	1114	1075	1272	1254	
S_{4}^{4}		- 100		142	_	26	
B ₀ ⁶	- 629	- 573	- 760	- 640	- 863	- 828	
B ₂ ⁶	230	223	262	222	224	193	
S26	_	267	_	255		142	
B ₄ ⁶	581	574	621	684	927	889	
S46		69	_	317	_	90	
B ₆	556	540	517	531	549	544	
S ₆ ⁶	—	142	-	409		- 188	
Levels	23	23	25	25	23	23	
RMS	7.5	6.4	8.6	5.6	7.8	4.5	
Residual	782	575	1187	340	853	284	

Table 2.	Crystal-field	parameters	of Eu ³⁺	(site	I) in	STRE2O4.

Table 3. Crystal-field parameters of Eu^{3+} (site II) in SrY₂O₄.

	Value	(cm ⁻¹)
	Sr	й ₂ О ₄
Parameter	C _{2v}	Cs
B_0^2	14	30
B_{2}^{2}	265	266
B_0^4	144	105
B_2^4	-1931	-1937
S_{2}^{4}	_	261
B_4^4	1153	1107
S4	—	11
B ₀ ⁶	- 161	- 94
B ₂ ⁶	575	566
S ₂	_	66
B ₄ ⁶	1121	1111
S_{4}^{6}		- 70
B ₆	949	993
S6	—	- 10
Levels	20	20
RMS	8.3	7.2
Residual	749	564

much lower than 0.1%. The impurity concentration is too small to allow its characterization by absorption. The curve presented shows experimental values corrected for the impurity contribution (figure 4).

As the paramagnetic susceptibility is a macroscopic property it is calculated by summing the elementary contribution of each site. As mentioned before, diagonalization on the complete secular determinant is required. The free-ion parameters are fixed to standard values: $E_1 = 5510.0 \text{ cm}^{-1}$, $E_2 = 24.22 \text{ cm}^{-1}$, $E_3 = 582.0 \text{ cm}^{-1}$, $\alpha = 20.0 \text{ cm}^{-1}$, $\beta =$ -640.0 cm⁻¹, $\gamma = 1750.0 \text{ cm}^{-1}$ [19]. The spin-orbit coupling constant ζ characterizes the position of the ⁷F_J barycentres. It differs for each site: 1275.0 cm⁻¹ for site I and 1250.0 cm⁻¹ for site II. The agreement between experiment and calculation is good (in particular the length and the position of the plateau) but not perfect (figure 4). In fact we have to keep in mind that Eu³⁺ constitutes a special case with a non-magnetic ⁷F₀ ground-state level. At low temperatures when only ⁷F₀ is populated, χ is expressed by the off-diagonal term in the Van Vleck formula, which is a temperature non-dependent secondorder term in the perturbation theory. This term is very dependent on the wavefunctions, and the C_{2v} approximation is sufficient to explain the small discrepancy.

References

- Taibi M, Aride J, Antic-Fidancev E, Lemaitre-Blaise M, Porcher P and Caro P 1988 J. Solid State Chem 74 329
- [2] Taibi M, Aride J, Antic-Fidancev E, Lemaitre-Blaise M and Porcher P 1989 Phys. Status Solidi A 115 523
- [3] Bailleul S, Porcher P, Taibi M and Aride J 1991 C.R. Acad. Sci., Paris, Ser. II 313 767
- [4] Brixner L H 1967 J. Electrochem. Soc. 114 253
- [5] Blasse G and Bril A 1967 J. Chem. Phys. 47 5139
- [6] Blasse G and Bril A 1969 J. Inorg. Nucl. Chem. 31 1521
- [7] Bianchard M, Linares C and Gaume-Mahn F 1971 C.R. Acad. Sci., Paris 272 1075
- [8] Rozdin I A, Plotkin S S, Sharipov Kh T, Porotnikov N V, Pravnichenko S P and Petrov K I 1976 Izv. Akad. Nauk. SSSR Neorg. Mater. 12 1255
- [9] Antic-Fidancev E, Lemaitre-Blaise M, Porcher P, Bueno I, Parada C and Saez-Puche R 1991 Inorg. Chim. Acta 182 5
- [10] Holsa J and Porcher P 1981 J. Chem. Phys. 75 2108
- [11] Holsa J and Porcher P 1982 J. Chem. Phys. 76 2798
- [12] Barry T L and Roy R 1967 J. Inorg. Nucl. Chem. 29 1243
- [13] Muller-Buschbaum Hk 1968 Z. Anorg. (Allg.) Chem. 358 138
- [14] Pepin J 1980 J. Appl. Crystallogr. 14 70
- [15] Carnall W T, Goodmann G L, Rajnak K and Rana R S 1989 J. Chem. Phys. 90 3443
- [16] Porcher P 1989 Computer routines REEL and IMAGE for the simulation of $d^{\tilde{N}}$ and f^{N} configurations involving the real and imaginary crystal field parameters
- [17] Van Vleck J H 1968 J. Phys. A: Math. Gen. 39 365
- [18] Nieuwpoort W C and Blasse G 1966 Solid State Commun. 4 227
- [19] Huang J, Loriers J, Porcher P, Teste de Sagey G, Caro P and Levy-Clement C 1984 J. Chem. Phys. 80 6204